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Compute the optimal alignment of ABC…XY..N and DEF…UV…M 



Dynamic Programming Matrix 
0 A B C … X Y … N 

0 0 1 2 3 X X+1 N 

D 1 

E 2 

F 3 

… 

U U 

V U+1 

… 

M M 

Top row and first column are easy: it takes L-edits to transform and 
empty string into a length L string 

Compute the optimal alignment of ABC…XY..N and DEF…UV…M 



Dynamic Programming Matrix 
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     “Up” + 1   α+1  

Ω = min     “Left+ + 1   β+1 
     “Diagonal” +0/1  γ+1 

 

Compute the optimal alignment of “ABC…XY..N” and “DEF…UV…M” 

   Up!
ABC...XY-!
DEF....UV!
        α!

   Left!
ABC....XY!
DEF...UV-!
    β!

Diagonal!
ABC...XY!
DEF...UV!
    γ!



Global Alignment Schematic 
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Evaluate all NxM cells in O(NxM) time. 
Value in cell D[n,m] is the edit distance. 

D[AGCACACA,ACACACTA] = 2 
AGCACAC-A!
|*|||||*|!
A-CACACTA !



Biological Networks 



Graphs 

A B 

•  Nodes 
–  People, Proteins, Genes, Neurons, Sequences, Numbers, … 
 

•  Edges 
–  A is connected to B 
–  A is related to B 
–  A regulates B 
–  A precedes B  
–  A interacts with B 
–  A activates B 
–  … 



Graph Types 

A 

B 

C 

List Tree 

A 

B C D 

F H G E 

I J 

Directed  
Acyclic  
Graph 

A 

C D E 

F 

G 

B 

A 

B C 

D E 

Cycle 

A 

B C 

D E 

Complete 



Representing Graphs 

A 

C D E 

F 

G 

B 

A B C D E F G 

A 1 1 1 

B 1 1 

C 1 1 

D 1 

E 1 

F 1 

G 

Adjacency Matrix 
Good for dense graphs 

Fast, Fixed storage: N2 bits 

Adjacency List 
Good for sparse graphs 

Compact storage: 4 bytes/edge 

A: C, D, E  D: F  
B: D, E   E: F 
C: F, G   G: 

Edge List 
Easy, good if you (mostly) need 

to iterate through the edges 
8 bytes / edge 

A,C   B,C   C,F 
A,D   B,D   C,G 
A,E   B,E   D,F 

 E,F   F,G 

Tools 
Matlab: http://www.mathworks.com/ 
Graphviz:  http://www.graphviz.org/ 
Gephi: https://gephi.org/ 
Cytoscape: http://www.cytoscape.org/ 

digraph G { 
 A->B 
 B->C 
 A->C 

} 
dot –Tpdf -og.pdf g.dot  



Network Characteristics 

C. elegans! D. melanogaster! S. cerevisiae!
# Nodes! 2646! 7464! 4965!
# Edges! 4037! 22831! 17536!
Avg. / Max Degree! 3.0 / 187! 6.1 / 178! 7.0 / 283!
# Components! 109! 66! 32!
Largest Component! 2386! 7335! 4906!
Diameter! 14! 12! 11!
Avg. Shortest Path! 4.8! 4.4! 4.1!
Data Sources! 2H! 2x2H, TAP-MS! 8x2H, 2xTAP, SUS!
Degree !
Distributions!
!
!
!

Small World:  Avg. Shortest Path between nodes is small 
Scale Free: Power law distribution of degree – preferential attachment 



Network Motifs 

Network Motifs: Simple Building Blocks of Complex Networks 
Milo et al (2002) Science. 298:824-827 

•  Network Motif 
–  Simple graph of connections 
–  Exhaustively enumerate all 

possible 1, 2, 3, … k node 
motifs 

•  Statistical Significance 
–  Compare frequency of a 

particular network motif in 
a real network as compared 
to a randomized network 

•  Certain motifs are 
“characteristic features” of 
the network 



Modularity 

Modularity and community structure in networks. 
Newman ME (2006) PNAS. 103(23) 8577-8582 

•  Community structure 
–  Densely connected groups of vertices, 

with only sparser connections between 
groups 

–  Reveals the structure of large-scale 
network data sets 

•  Modularity 
–  The number of edges falling within groups 

minus the expected number in an 
equivalent network with edges placed at 
random 

–  Larger positive values => Stronger 
community structure 

–  Optimal assignment determined by 
computing the eigenvector of the 
modularity matrix 

Random Prob.  
(product of degrees) 

Normalization 
factor 

Adjacency  
matrix 

Indicates 
same group 



Kevin Bacon and Bipartite Graphs 
72 

60 

35 

31 

45 

Find the shortest 
path from 

Kevin Bacon 
to 

Jason Lee 

Breadth First Search:  
4 hops 

 
Bacon Distance: 

2 
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BFS 
BFS(start, stop) 
// initialize all nodes dist = -1 
start.dist = 0 
list.addEnd(start) 
while (!list.empty()) 
   cur = list.begin()  
   if (cur == stop)  
      print cur.dist; 
   else 
      foreach child in cur.children 
         if (child.dist == -1) 
             child.dist = cur.dist+1 
             list.addEnd(child)  
 

 
[How many nodes will it visit?] 
 
[What's the running time?] 
 
[What happens for disconnected 
components?] 
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BFS 
BFS(start, stop) 
// initialize all nodes dist = -1 
start.dist = 0 
list.addEnd(start) 
while (!list.empty()) 
   cur = list.begin()  
   if (cur == stop)  
      print cur.dist; 
   else 
      foreach child in cur.children 
         if (child.dist == -1) 
             child.dist = cur.dist+1 
             list.addEnd(child)  
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0 DFS(start, stop) 
// initialize all nodes dist = -1 
start.dist = 0 
list.addEnd(start) 
while (!list.empty()) 
   cur = list.end()  
   if (cur == stop)  
      print cur.dist; 
   else 
      foreach child in cur.children 
         if (child.dist == -1) 
             child.dist = cur.dist+1 
             list.addEnd(child)  
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Eulerian Cycle Problem 

•  Seven Bridges of Königsberg 
– Find a cycle that visits every edge exactly once 

 

[Can you find the cycle?] 
bioalgorithms.info 



Euler Theorem 

•  A graph is balanced if for every vertex the 
number of incoming edges equals to the 
number of outgoing edges:  

                           in(v)=out(v) 

•  Theorem:  A connected graph is Eulerian if and 
only if each of its vertices is balanced. 

 

bioalgorithms.info 



Algorithm for Constructing an Eulerian Cycle  

a.  Start with an arbitrary vertex 
v and form an arbitrary cycle 
with unused edges until a dead 
end is reached.  Since the 
graph is Eulerian this dead end 
is necessarily the starting 
point, i.e., vertex v. 

bioalgorithms.info 



Algorithm for Constructing an Eulerian Cycle (cont’d) 

b.   If cycle from (a) above is not 
an Eulerian cycle, it must 
contain a vertex w, which 
has untraversed edges.  
Perform step (a) again, using 
vertex w as the starting 
point. Once again, we will 
end up in the starting vertex 
w. 

bioalgorithms.info 



Algorithm for Constructing an Eulerian Cycle (cont’d) 

c.  Combine the cycles 
from (a) and (b) into 
a single cycle and 
iterate step (b). 

bioalgorithms.info 



 Generally an exponential number of compatible sequences 
–  Value computed by application of the BEST theorem (Hutchinson, 1975) 

 
 
          L = n x n matrix with ru-auu along the diagonal and -auv in entry uv 

   ru = d+(u)+1 if u=t, or d+(u) otherwise 
   auv = multiplicity of edge from u to v 

Counting Eulerian Cycles 

ARBRCRD 
or 

ARCRBRD 
A R D 

B 

C 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.  



BFS and TSP 
•  BFS computes the shortest path between a 

pair of nodes in O(|E|) = O(|N|2) 

•  What if we wanted to compute the shortest 
path visiting every node once? 
– Traveling Salesman Problem 
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2 

ABDCA: 4+2+5+3 = 14 
ACDBA: 3+5+2+4 = 14* 
ABCDA: 4+1+5+1 = 11 
ADCBA: 1+5+1+4 = 11* 
ACBDA: 3+1+2+1 = 7 
ADBCA: 1+2+1+3= 7 * 



Greedy Search 
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Greedy Search 
Greedy Search 
cur=graph.randNode() 
while (!done) 

 next=cur.getNextClosest() 
 
Greedy:  ABDCA = 5+8+10+50= 73 
Optimal:  ACBDA = 5+11+10+12 = 38  
 
Greedy finds the global optimum only when 
1.  Greedy Choice: Local is correct without reconsideration 
2.  Optimal Substructure: Problem can be split into subproblems 

Optimal Greedy: Making change with the fewest number of coins 
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TSP Complexity 

•  No fast solution 
–  Knowing optimal tour through n cities doesn't 

seem to help much for n+1 cities 

 
[How many possible tours for n cities?] 

•  Extensive searching is the only 
provably correct algorithm 
–  Brute Force: O(n!) 

•  ~20 cities max 
•  20! = 2.4 x 1018 
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Branch-and-Bound 
•  Abort on suboptimal solutions 

as soon as possible 
–  ADBECA = 1+2+2+2+3 = 10 
–  ABDE = 4+2+30 > 10 
–  ADE = 1+30 > 10 
–  AED = 1+30 > 10 
–  … 
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1 
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2 

E 
30 2 

1 
2 

•  Performance Heuristic 
–  Always gives the optimal answer 
–  Doesn't always help performance, but often does 
–  Current TSP record holder: 

•  85,900 cities  
•  85900! = 10386526 

[When not?] 



TSP and NP-complete 
•  TSP is one of many extremely hard 

problems of the class NP-complete 
–  Extensive searching is the only way to 

find an exact solution 
–  Often have to settle for approx. solution 

•  WARNING:  Many biological problems are in this class 
–  Find a tour the visits every node once (Genome Assembly) 
–  Find the smallest set of vertices covering the edges (Essential Genes) 
–  Find the largest clique in the graph (Protein Complexes) 
–  Find the highest mutual information encoding scheme (Neurobiology) 
–  Find the best set of moves in tetris  
–  … 
–  http://en.wikipedia.org/wiki/List_of_NP-complete_problems 



Given: S = {s1, …, sn} 

Problem: Find minimal length superstring of S 

s1,s2,s3 = CACCCGGGTGCCACC  15  

s1,s3,s2 = CACCCACCGGGTGC 14 

s2,s1,s3 = CCGGGTGCACCCACC  15 

s2,s3,s1 = CCGGGTGCCACCC  13 

s3,s1,s2 = CCACCCGGGTGC  12 

s3,s2,s1 = CCACCGGGTGCACCC  15 

s1 CACCC 

s2 CCGGGTGC 

s3 CCACC 

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH 

Shortest Common Superstring 



Break 



Milestones in Genome Assembly 

2000. Myers et al. 
1st Large WGS Assembly. 

Celera Assembler. 116 Mbp 

1995. Fleischmann et al. 
1st Free Living Organism 
TIGR Assembler. 1.8Mbp 

2010. Li et al. 
1st Large SGS Assembly. 
SOAPdenovo 2.2 Gbp 

1977. Sanger et al. 
1st Complete Organism 

5375 bp 

2001. Venter et al., IHGSC 
Human Genome 

Celera Assembler/GigaAssembler. 2.9 Gbp 

1998. C.elegans SC 
1st Multicellular Organism 

BAC-by-BAC Phrap. 97Mbp 

Like Dickens, we must computationally reconstruct a genome from short fragments 



Assembly Applications 
•  Novel genomes 

 

•  Metagenomes 

•  Sequencing assays 
– Structural variations 
– Transcript assembly 
– … 



Assembling a Genome 

2. Construct assembly graph from overlapping reads 

…AGCCTAGACCTACAGGATGCGCGACACGT 

              GGATGCGCGACACGTCGCATATCCGGT… 

3. Simplify assembly graph 

 1. Shear & Sequence DNA 

4. Detangle graph with long reads, mates, and other links 



Why are genomes hard to assemble? 

1.  Biological:  
–  (Very) High ploidy, heterozygosity, repeat content 

2.  Sequencing:  
–  (Very) large genomes, imperfect sequencing 

3.  Computational:  
–  (Very) Large genomes, complex structure 

4.  Accuracy:  
–  (Very) Hard to assess correctness 
 



Ingredients for a good assembly 

Current challenges in de novo plant genome sequencing and assembly 
Schatz MC, Witkowski, McCombie, WR (2012) Genome Biology. 12:243 

Coverage 

High coverage is required 
–  Oversample the genome to ensure 

every base is sequenced with long 
overlaps between reads 

–  Biased coverage will also fragment 
assembly 

Lander Waterman Expected Contig Length vs Coverage
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Read Length 

Reads & mates must be longer 
than the repeats 
–  Short reads will have false overlaps 

forming hairball assembly graphs 
–  With long enough reads, assemble 

entire chromosomes into contigs 

Quality 

Errors obscure overlaps 
–  Reads are assembled by finding 

kmers shared in pair of reads 
–  High error rate requires very short 

seeds, increasing complexity and 
forming assembly hairballs 



Illumina Sequencing by Synthesis 

Metzker (2010) Nature Reviews Genetics 11:31-46 
http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf 

1. Prepare 

2. Attach 

3. Amplify 

4. Image 

5. Basecall 



Paired-end and Mate-pairs 
Paired-end sequencing 
•  Read one end of the molecule, flip, and read the other end 
•  Generate pair of reads separated by up to 500bp with inward orientation 

Mate-pair sequencing 
•  Circularize long molecules (1-10kbp), shear into fragments, & sequence 
•  Mate failures create short paired-end reads 

10kbp 

10kbp 
circle 

300bp 

2x100 @ ~10kbp (outies) 

2x100 @ 300bp (innies) 



Typical contig coverage 
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Imagine raindrops on a sidewalk 



Balls in Bins 1x 



Balls in Bins 2x 



Balls in Bins 3x 



Balls in Bins 4x 



Balls in Bins 5x 



Balls in Bins 6x 



Balls in Bins 7x 



Balls in Bins 8x 



Coverage and Read Length 
Idealized Lander-Waterman model 
•  Reads start at perfectly random 

positions 

•  Contig length is a function of 
coverage and read length 
–  Short reads require much higher 

coverage to reach same expected 
contig length 

•  Need even high coverage for 
higher ploidy, sequencing errors, 
sequencing biases 
–  Recommend 100x coverage 

Lander Waterman Expected Contig Length vs Coverage
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Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  



de Bruijn Graph Construction 

•  Dk = (V,E) 
•  V = All length-k subfragments (k < l) 
•  E = Directed edges between consecutive subfragments 

•  Nodes overlap by k-1 words 

•  Locally constructed graph reveals the global sequence structure 
•  Overlaps between sequences implicitly computed 

It was the best  was the best of It was the best of  

Original Fragment Directed Edge 

de Bruijn, 1946 
Idury and Waterman, 1995 
Pevzner, Tang, Waterman, 2001 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best  

best of times, it 

was the best of 

the best of times, 

of times, it was 

times, it was the 

it was the worst 

was the worst of 

worst of times, it 

the worst of times, 

it was the age 

was the age of 
the age of wisdom, 

age of wisdom, it 

of wisdom, it was 

wisdom, it was the 

After graph construction, 
try to simplify the graph as 

much as possible 



de Bruijn Graph Assembly 

the age of foolishness 

It was the best of times, it 

 of times, it was the 

it was the worst of times, it 

it was the age of 
the age of wisdom, it was the After graph construction, 

try to simplify the graph as 
much as possible 



Two Paradigms for Assembly 

Short read assemblers 
•  Repeats depends on word length 
•  Read coherency, placements lost 
•  Robust to high coverage 

Assembly of Large Genomes using Second Generation Sequencing 
Schatz MC, Delcher AL, Salzberg SL (2010) Genome Research. 20:1165-1173.  

de	
  Bruijn	
  Graph	
  

GTT 

GTC 

TTA 
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AGT AAG 

GAA 
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AGA 

ATA 

Long read assemblers 
•  Repeats depends on read length 
•  Read coherency, placements kept 
•  Tangled by high coverage 

Overlap	
  Graph	
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Overlap between two sequences 

…AGCCTAGACCTACAGGATGCGCGGACACGTAGCCAGGAC!
      CAGTACTTGGATGCGCTGACACGTAGCTTATCCGGT…!

overlap (19 bases) overhang (6 bases) 

overhang 
overlap - region of similarity between regions 
overhang - un-aligned ends of the sequences 
 
The assembler screens merges based on:  
•  length of overlap 
•  % identity in overlap region 
•  maximum overhang size. 

% identity = 18/19 % = 94.7% 

[How do we compute the overlap?] 



Unitigging / Unipathing 

•  After simplification and correction, compress graph 
down to its non-branching initial contigs 
–  Aka “unitigs”, “unipaths”  
–  Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats 



Errors in the graph 

(Chaisson, 2009) 

Clip Tips Pop Bubbles 
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Repeats and Read Length 

•  Explore the relationship between read length and contig N50 size 
–  Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000 
–  Contig/Read length relationship depends on specific repeat composition 
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Bacillus anthracis       
5.22Mbp 

Colwellia psychrerythraea 
5.37Mbp 

Escherichia coli K12 
4.64Mbp 

Salmonella typhi      
4.80Mbp 

Yersinia pestis         
4.70Mbp 

Assembly Complexity of Prokaryotic Genomes using Short Reads. 
Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics. 11:21. 



Repetitive regions 

•  Over 50% of mammalian genomes are repetitive 
–  Large plant genomes tend to be even worse 
–  Wheat: 16 Gbp; Pine: 24 Gbp 55 

Repeat Type Definition / Example Prevalence 

Low-complexity DNA / Microsatellites (b1b2…bk)N where 1 < k < 6 
CACACACACACACACACACA 

2% 

SINEs (Short Interspersed Nuclear 
Elements) 

Alu sequence (~280 bp) 
Mariner elements (~80 bp) 

13% 

LINEs (Long Interspersed Nuclear 
Elements) 

~500 – 5,000 bp 21% 

LTR (long terminal repeat) 
retrotransposons 

Ty1-copia, Ty3-gypsy, Pao-BEL 
(~100 – 5,000 bp) 

8% 

Other DNA transposons 3% 

Gene families & segmental duplications 4% 



Repeats and Coverage Statistics A-stat 

•! If n reads are a uniform random sample of the genome of length G, 
we expect k=n!/G reads to start in a region of length!. 

–! If we see many more reads than k (if the arrival rate is > A) , it is likely to be 
a collapsed repeat   

–! Requires an accurate genome size estimate 
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Initial Scaffolding 

Create a initial scaffold of unique unitigs (U-Unitigs) whose 
A-stat > 5. Also recruit borderline unitigs whose A-stat is > 2 
and have consistent mates with the U-Unitigs. 

Scaffold 

Bundle 

U-Unitig 



Repeat Resolution 

Rock Stone 

Scaffold 

Place rocks (A-stat > 0 with multiple consistent mates), and stones (single mate and 
overlap path with placed objects) into the gaps. Pebbles, unitigs lackings mates, are 
no longer incorporated regardless of overlap qualities. 



Derive Consensus Sequence 

Derive multiple alignment from pairwise read 
alignments 

TAGATTACACAGATTACTGA TTGATGGCGTAA CTA 
TAGATTACACAGATTACTGACTTGATGGCGTAAACTA 
TAG TTACACAGATTATTGACTTCATGGCGTAA CTA 
TAGATTACACAGATTACTGACTTGATGGCGTAA CTA 
TAGATTACACAGATTACTGACTTGATGGGGTAA CTA 

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA 

Derive each consensus base by weighted 
voting 



N50 size 
Def: 50% of the genome is in contigs larger than N50 

Example:  1 Mbp genome 
 
 
 
 
 

 N50 size = 30 kbp  
  (300k+100k+45k+45k+30k = 520k >= 500kbp) 

 
Note: 

N50 values are only meaningful to compare when base genome 
size is the same in all cases 

1000 

300 45 30 100 20 15 15 10 . . . . . 45 

50% 



Assembly Algorithms 

ALLPATHS-LG SOAPdenovo Celera Assembler 

Broad’s assembler 
(Gnerre et al. 2011) 

 
De bruijn graph 

Short + PacBio (patching) 
 

Easy to run if you have 
compatible libraries 

  
http://www.broadinstitute.org/

software/allpaths-lg/blog/ 

BGI’s assembler 
(Li et al. 2010) 

 
De bruijn graph 

Short reads 
 

Most flexible, but requires a 
lot of tuning 

 
http://soap.genomics.org.cn/

soapdenovo.html 

JCVI’s assembler 
(Miller et al. 2008) 

 
Overlap graph 

Medium + Long reads 
 

Supports Illumina/454/PacBio 
Hybrid assemblies 

 
http://wgs-assembler.sf.net 



Assembly Validation 

 Automatically scan an assembly to locate 
misassembly signatures for further analysis 
and correction 

 Assembly-validation pipeline 
1.  Evaluate Mate Pairs & Libraries 
2.  Evaluate Read Alignments 
3.  Evaluate Read Breakpoints 
4.  Analyze Depth of Coverage 

Genome Assembly forensics: finding the elusive mis-assembly. 
Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55. 

It was the best 
of times, it 

 of times, 
 it was the 

it was the  
age of 

it was the worst of 
times, it 



Mate-Happiness: asmQC 
•  Excision: Skip reads between flanking repeats 

–  Truth 

–  Misassembly: Compressed Mates, Missing Mates 



C/E Statistic 

•  The presence of individual compressed or expanded 
mates is rare but expected. 

•  Do the inserts spanning a given position differ from 
the rest of the library? 
–  Flag large differences as potential misassemblies 
–  Even if each individual mate is “happy” 

•  Compute the statistic at all positions 
–  (Local Mean – Global Mean) / Scaling Factor 

•  Introduced by Jim Yorke’s group at UMD 

Forensics  



Sampling the Genome 
2kb 4kb 6kb 

8 inserts: 3kb-6kb 

Local Mean: 4048 

C/E Stat:  (4048-4000)   = +0.33 

                (400 / √8)  

Near 0 indicates overall happiness 

0kb 

Forensics  



C/E-Statistic: Expansion 
2kb 4kb 6kb 

8 inserts: 3.2kb-6kb 

Local Mean: 4461 

C/E Stat:  (4461-4000)   = +3.26 

                (400 / √8)  

C/E Stat ≥ 3.0 indicates Expansion 

0kb 

Forensics  



C/E-Statistic: Compression 

8 inserts: 3.2 kb-4.8kb 

Local Mean: 3488 

C/E Stat:  (3488-4000)   = -3.62 

                (400 / √8)  

C/E Stat ≤ -3.0 indicates 
Compression 

2kb 4kb 6kb 0kb 

Forensics  



Assembly Forensics 

Hawkeye & AMOS: Visualizing and assessing the quality of genome assemblies 
Schatz, M.C. et al. (2011) Briefings in Bioinformatics. In Press. 

Truth: 

Mis-assembled: 

Forensics  



Assembly Summary 
Assembly quality depends on  
1.  Coverage: low coverage is mathematically hopeless 
2.  Repeat composition: high repeat content is challenging 
3.  Read length: longer reads help resolve repeats 
4.  Error rate: errors reduce coverage, obscure true overlaps 

•  Assembly is a hierarchical, starting from individual reads, build high 
confidence contigs/unitigs, incorporate the mates to build scaffolds  
–  Extensive error correction is the key to getting the best assembly possible 

from a given data set 

•  Watch out for collapsed repeats & other misassemblies 
–  Globally/Locally reassemble data from scratch with better parameters & 

stitch the 2 assemblies together 



Thank You 

http://schatzlab.cshl.edu/teaching/ 
@mike_schatz 


